Differentiable Manifolds

§21. Orientations

Sichuan University, Fall 2020
Orientations of a Vector Space

Example (Orientations of \(\mathbb{R} \))

On \(\mathbb{R} \) an orientation is one of two directions:

\[
\begin{array}{c}
\rightarrow \\
\leftarrow \\
\end{array}
\]

The orientations of a line.

Two (nonzero) vectors \(u \) and \(v \) define the same direction if and only if \(u = av \) with \(a > 0 \).
On \mathbb{R}^2 an orientation is either direct (counterclockwise) or indirect (clockwise).

![The orientations of a plane.](image)

- An ordered basis (v_1, v_2) defines the direct (resp., indirect) orientation if the angle θ from v_1 to v_2 is > 0 (resp., < 0).
- As $\det(v_1, u_2) = |v_1||v_2|\sin \theta$, we see that

$$(v_1, v_2) \text{ is direct } \iff \det(v_1, v_2) > 0,$$

$$(v_1, v_2) \text{ is indirect } \iff \det(v_1, v_2) < 0.$$
Orientations of a Vector Space

Example (The orientations of a plane, continued)

- Let \((u_1, u_2)\) and \((v_1, v_2)\) be ordered bases. Write \(u_i = \sum a^j_i v_j\).
 - The matrix \(A = [a^j_i]\) is called the change-of-basis matrix. We have
 \[
 \det(u_1, u_2) = \det(A) \det(v_1, v_2).
 \]
- Thus, \((u_1, u_2)\) and \((v_1, v_2)\) defines the same orientation if and only if \(\det(A) > 0\).

Definition

Two bases \((u_1, u_2)\) and \((v_1, v_2)\) are called equivalent if the change-of-basis matrix has positive determinant.

- This defines an equivalence relation on order bases.
- We have a one-to-one correspondance:
 \[
 \{\text{orientations}\} \leftrightarrow \{\text{equivalence classes of bases}\}.
 \]
Orientations of a Vector Space

Definition

Let V be a vector space of dimension n. Two bases (u_1, \ldots, u_n) and (v_1, \ldots, v_n) are said to be *equivalent*, and we write $(u_1, \ldots, u_n) \sim (v_1, \ldots, v_n)$ if we can go from one to the other by a change-of-base matrix with positive determinant.

Remark

This defines an equivalence relation on bases of V.

Definition

An *orientation* of V is a choice of an equivalence class of bases.

Remark

- A vector space has exactly two orientations.
- We denote by $[(v_1, \ldots, v_n)]$ the class of (v_1, \ldots, v_n).
Orientations and Covectors

Remark

Let \((v_1, \ldots, v_n)\) be a basis of a vector space \(V\). Let \((\alpha^1, \ldots, \alpha^n)\) be the dual basis of \(V^*\). Then, for any \(n\)-covector \(\beta \in \Lambda^n(V^*)\), we have

\[
\beta = \beta(v_1, \ldots, v_n)\alpha^1 \wedge \cdots \wedge \alpha^n.
\]

In particular, \(\beta \neq 0\) if and only if \(\beta(v_1, \ldots, v_n) \neq 0\).
Lemma (Lemma 21.1)

Let u_1, \ldots, u_n and v_1, \ldots, v_n be vectors in V such that $u_i = \sum a^i_j v_j$ for some matrix $A = [a^i_j]$. For any n-covector β we have

$$\beta(u_1, \ldots, u_n) = (\det A)\beta(v_1, \ldots, v_n).$$

Consequence

Let (u_1, \ldots, u_n) and (v_1, \ldots, v_n) be bases and $\beta \neq 0$. Then $\beta(u_1, \ldots, u_n)$ and $\beta(v_1, \ldots, v_n)$ have same sign if and only if $\det A > 0$, i.e., (u_1, \ldots, u_n) and (v_1, \ldots, v_n) define the same orientation.
Definition

We say that an n-covector β on V **specifies** the orientation $[(v_1, \ldots, v_n)]$ if $\beta(v_1, \ldots, v_n) > 0$.

Remark

Let (v_1, \ldots, v_n) be a basis of a vector space V. Let $(\alpha_1, \ldots, \alpha_n)$ be the dual basis of V^*. By the remark on slide 6, we have

$$\beta = \beta(v_1, \ldots, v_2)\alpha_1 \wedge \cdots \wedge \alpha_n$$

Thus, β **specifies** the orientation $[(v_1, \ldots, v_n)]$ if and only if β is a positive scalar multiple of $\alpha_1 \wedge \cdots \wedge \alpha_n$.
Definition
We say that two non-zero \(n \)-covectors \(\beta \) and \(\beta' \) are equivalent if \(\beta' = a \beta \) with \(a > 0 \).

Remark
This defines an equivalence relation on \(\Lambda^n(V^*) \setminus \{0\} \).

Fact
We have a one-to-one correspondence:
\[
\{ \text{orientations of } V \} \leftrightarrow \{ \text{equivalence classes of } n \text{-covectors } \neq 0 \}.
\]
Fact

Let M be a smooth manifold of dimension n. If (X_1, \ldots, X_n) is a frame of TM over U and $p \in U$, then $(X_{1,p}, \ldots, X_{n,p})$ is a basis of T_pM, and hence it defines an orientation of T_pM.

Remark

We say that a frame (X_1, \ldots, X_n) of TM over an open U is continuous, if, for each i, the vector field X_i is continuous as a map from U to TM.
Definition (Pointwise orientation)

- A pointwise orientation of M assigns to each $p \in M$ an orientation of $T_p M$, i.e., an equivalence class $\mu_p = [(X_{1,p}, \ldots, X_{n,p})]$ of (ordered) bases of $T_p M$.

- We say that a pointwise orientation is continuous at $p \in M$ if there is an open U containing p and a continuous tangent frame (Y_1, \ldots, Y_n) over U such that $(Y_{1,q}, \ldots, Y_{n,q})$ defines the orientation of $T_q M$ for every $q \in U$.

Orientations of a Manifold
Orientations of a Manifold

Definition (Orientations)

- An orientation of M is a pointwise orientation which is continuous at every $p \in M$.
- We say that M is orientable when it admits an orientation.
- We say that M is oriented when it is equipped with an orientation.

Remarks

- Any continuous (or even smooth) global frame (X_1, \ldots, X_n) of TM over M defines an orientation.
- The converse does not hold. For instance, the even-dimensional spheres S^{2n}, $n \geq 1$, do not admit global tangent frames; yet there are orientable.
Orientations of a Manifold

Example

\mathbb{R}^n is oriented by the global frame $(\partial/\partial x^1, \ldots, \partial/\partial x^n)$. More generally, any vector space is orientable.

Example (see also Problem 21.7)

If G is a Lie group, then G admits a global tangent frame consisting of left-invariant vector fields, and so G is orientable.
Example (Möbius Band; Example 21.2)

The Möbius band is the quotient of the rectangle \(R = [0, 1] \times [-1, 1] \) by the equivalence relation,

\[
(x, y) \sim (x, y), \quad 0 < x < 1, \quad -1 \leq y \leq 1,
\]
\[
(0, y) \sim (1, -y), \quad -1 \leq y \leq 1.
\]

This is a non-orientable surface (see Tu’s book).
Proposition (Proposition 21.3)

If an orientable manifold is connected, then it has exactly two possible orientations.
Lemma (see Lemma 21.4)

Let μ be a pointwise orientation of M. TFAE:

(i) μ is continuous on M.

(ii) For every $p \in M$, there is a chart (U, x^1, \ldots, x^n) near p such that the orientation of $T_p M$ is defined by $(\partial/\partial x^1, \ldots, \partial/\partial x^n)$.

(iii) For every $p \in M$, there is a chart (U, x^1, \ldots, x^n) near p such that the orientation of $T_p M$ is specified by $dx^1 \wedge \cdots \wedge dx^n$.

Theorem (Theorem 21.5)

A manifold M of dimension n is orientable if and only if there exists a smooth nowhere-vanishing n-form on M.
Remark

Let ω be a nowhere vanishing n-form on M. Then ω defines an orientation of M as follows:

- For every $p \in M$, there is a chart (U, x^1, \ldots, x^n) near p such that $\omega(\partial/\partial x^1, \ldots, \partial/\partial x^n) > 0$ on U.
- The orientation of $T_p M$ is the class of $(\partial/\partial x^1|_p, \ldots, \partial/\partial x^n|_p)$.
- As the frames $(\partial/\partial x^1, \ldots, \partial/\partial x^n)$ are continuous (since they are smooth), we get a continuous pointwise orientation on M, i.e., an orientation of M.

Example

Suppose that 0 is a regular value of some smooth function \(f(x, y, z) \) on \(\mathbb{R}^3 \).

- By the regular level set theorem, the zero set \(S = f^{-1}(0) \) is a regular submanifold of \(\mathbb{R}^3 \), and hence is manifold.
- By Problem 19.11 it admits a smooth nowhere-vanishing 2-form.
- Thus, by Theorem 21.5 the manifold \(S \) is orientable.

For instance, the 2-sphere \(S^2 \) is orientable.
Definition

We say that two C^∞ nowhere-vanishing n-forms ω and ω' on M are equivalent, and we write $\omega \sim \omega'$, if there is $f \in C^\infty(M)$, $f > 0$, such that $\omega' = f \omega$.

Remark

This defines an equivalence relation on C^∞ nowhere-vanishing n-forms on M.

Proposition

We have a one-to-one correspondence:

\[
\{\text{orientations of } M\} \leftrightarrow \left\{ C^\infty \text{ equivalence classes of nowhere-vanishing } n\text{-forms} \right\}
\]
Definition
If ω is a C^∞ nowhere-vanishing n-form that specifies the orientation at every point, then we say that ω is an orientation form.

Example
The (standard) orientation of \mathbb{R}^n is specified by the n-form $dx^1 \wedge \cdots \wedge dx^n$.

Remark
An oriented manifold is often represented as $(M, [\omega])$, where $[\omega]$ is a class of orientation forms.
Definition

A diffeomorphism $F : (N, [\omega_N]) \rightarrow (M, [\omega_M])$ between oriented manifolds is called orientation-preserving if $[F^*\omega_M] = [\omega_N]$. It is called orientation-reversing if $[F^*\omega_M] = [-\omega_N]$.

Proposition (Proposition 21.8)

Let U and V be open sets in \mathbb{R}^n equipped with orientations inherited from \mathbb{R}^n. A diffeomorphism $F : U \rightarrow V$ is orientation-preserving if and only if the Jacobian determinant $\det[\partial F^i / \partial x^j]$ is everywhere positive on U.
Definition (Definition 21.9)

An atlas of M is called *oriented* if given two overlapping charts (U, x^1, \ldots, x^n) and (V, y^1, \ldots, y^n) the transition map is orientation-preserving, i.e., the Jacobian determinant $\det[\partial y^i/\partial x^j]$ is everywhere positive on $U \cap V$.

Theorem (Theorem 21.10)

A manifold M is orientable if and only if it admits an oriented atlas.
Remark

An oriented atlas defines an orientation of M as follows:

- Given $p \in M$ and a chart (U, x^1, \ldots, x^n), the orientation of $T_p M$ is the class of $(\partial/\partial x^1|_p, \ldots, \partial/\partial x^n|_p)$.
- The orientation of $T_p M$ does not depend on the choice of the chart, since the atlas is oriented.
- As the frames $(\partial/\partial x^1, \ldots, \partial/\partial x^n)$ are continuous, we get a continuous pointwise orientation on M, i.e., an orientation of M.
Definition (Definition 21.11)

Two oriented atlases \(\{(U_\alpha, \phi_\alpha)\} \) and \(\{(V_\beta, \psi_\beta)\} \) on \(M \) are said to be equivalent if the transition functions

\[
\phi_\alpha \circ \psi_\beta^{-1} : \psi_\beta(U_\alpha \cap V_\beta) \longrightarrow \phi_\alpha(U_\alpha \cap V_\beta)
\]

have positive Jacobian determinants for all \(\alpha, \beta \).

Remark

This defines an equivalence relation on oriented atlases.

Proposition

We have a one-to-one correspondence:

\[
\{ \text{orientations of } M \} \leftrightarrow \{ \text{equivalence classes of oriented atlases} \}
\]
Summary
If M is an orientable manifold of dimension n, there are 3 equivalent ways to define an orientation:

1. By using a continuous pointwise orientation.
2. By using a smooth nowhere-vanishing n-form.