Commutative Algebra
Chapter 3: Rings and Modules of Fractions

Sichuan University, Fall 2020
The Field of Fractions of an Integral Domain

Reminder
We say that a ring A is an integral domain when it has no non-zero divisors, i.e.,

$$xy = 0 \iff x = 0 \text{ or } y = 0.$$

Fact
In the same way we construct the rational field \mathbb{Q} from the ring of integers \mathbb{Z}, with any integral domain A we can associate its field of fractions $\text{Frac}(A)$.
The Field of Fractions of an Integral Domain

Facts

Let \(A \) is an integral domain. Set \(S = A \setminus \{0\} \). On \(A \times S \) define a relation \(\equiv \) by

\[
(a, s) \equiv (b, t) \iff at = bs.
\]

- This relation is reflexive and symmetric,

\[
(a, s) \equiv (a, s), \quad (a, s) \equiv (b, t) \iff (b, t) \equiv (a, s).
\]

- To check transitivity, suppose that \((a, s) \equiv (b, t) \) and \((b, t) \equiv (c, u) \), i.e., \(at = bs \) and \(bu = ct \). Then

\[
t(au - cs) = (at)u - (ct)s = (bs)u - (bu)s = 0.
\]

- As \(t \neq 0 \) and \(A \) is an integral domain, this implies that \(au = cs \), i.e., \((a, s) \equiv (c, u) \).

- Therefore, the relation \(\equiv \) is an equivalence relation on \(A \times S \).
The Field of Fractions of an Integral Domain

Definition
1. The class of \((a, s)\) is denoted by \(a/s\).
2. The set of equivalence classes is denoted by \(\text{Frac}(A)\).

Proposition
1. \(\text{Frac}(A)\) is a field with respect to the addition and multiplication given by
 \[
 \frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}, \quad \frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}.
 \]
2. The map \(A \ni a \mapsto a/1 \in \text{Frac}(A)\) is an injective ring homomorphism, and hence embeds \(A\) as a subring into \(\text{Frac}(A)\).

Definition
The field \(\text{Frac}(A)\) is called the *field of fractions* of \(A\).
Examples

1. If $A = \mathbb{Z}$, then $\text{Frac}(A) = \mathbb{Q}$.

2. If A is a polynomial ring $k[x]$, k field, then $\text{Frac}(A)$ is the field of rational functions over k.

3. If A is the ring of holomorphic functions on an open $\Omega \subset \mathbb{C}$, then $\text{Frac}(A)$ is the field of meromorphic functions on Ω.
Remark

- The construction of the field Frac(A) uses the fact that A is an integral domain.
- It still can be adapted for arbitrary rings.

In what follows we let A be a ring.

Definition

A subset S of A is called *multiplicatively closed* when

\[1 \in S \quad \text{and} \quad x, y \in S \implies xy \in S. \]

Example

The ring A is an integral domain if and only if \(A \setminus \{0\} \) is multiplicatively closed.
Rings of Fractions

Facts

Let S be a multiplicatively closed subset of A. On $A \times S$ define a relation \equiv by

$$(a, s) \equiv (b, t) \iff \exists u \in S \text{ such that } (at - bs)u = 0.$$

- This relation is reflexive and symmetric.
- To check transitivity, suppose that $(a, s) \equiv (b, t)$ and $(b, t) \equiv (c, u)$, i.e., there are $v, w \in S$ such that

$$(at - bs)v = (bu - ct)w = 0.$$

Then $(au - cs)tvw$ is equal to

As S is multiplicatively closed, $tvw \in S$, and so $(a, s) \equiv (c, u)$.
- Thus, we have an equivalence relation on $A \times S$.

Rings of Fractions

Definition
1. The class of \((a, s)\) is denoted by \(a/s\).
2. The set of equivalence classes is denoted by \(S^{-1}A\).

Proposition
1. \(S^{-1}A\) is a ring with respect to the addition and multiplication given by
 \[
 (a/s) + (b/t) = (at + bs)/st, \quad (a/s) \cdot (b/t) = ab/st.
 \]
2. The map \(f : A \to S^{-1}A, a \to a/1\) is a ring homomorphism.

Remarks
1. The ring homomorphism \(f : A \to S^{-1}A\) is not injective in general.
2. If \(A\) is an integral domain and \(S = A \setminus \{0\}\), then \(S^{-1}A\) is the field of fractions \(\text{Frac}(A)\).
Rings of Fractions

Definition

The ring $S^{-1}A$ is called the *ring of fractions* of A with respect to S.

Proposition (Universal Property of $S^{-1}A$; Proposition 3.1)

Let $g : A \rightarrow B$ be a ring homomorphism such that $g(s)$ is a unit in B for all $s \in S$. Then there is a unique ring homomorphism $h : S^{-1}A \rightarrow B$ such that $g = h \circ f$.
Fact

The ring $S^{-1}A$ and the homomorphism $f : A \to S^{-1}A$ satisfy the following properties:

(i) $f(s)$ is a unit in $S^{-1}A$ for all $s \in S$.

(ii) If $f(a) = 0$, then $as = 0$ for some $s \in S$.

(iii) Every element of $S^{-1}A$ is of the form $f(a)f(s)^{-1}$ with $a \in A$ and $s \in S$.

Corollary (Corollary 3.2)

Let B be a ring and $g : A \to B$ a ring homomorphism satisfying the properties (i)–(iii) above. Then there is a unique ring isomorphism $h : S^{-1}A \to B$ such that $g = h \circ f$.
Examples of Rings of Fractions

Example

- The single set $S = \{0\}$ is multiplicatively closed.
- In this case $S^{-1}A$ is the zero ring, since $(a, 0) \equiv (0, 0)$ for all $a \in A$.
- In fact, we have

$$S^{-1}A \text{ is the zero ring } \iff 0 \in S.$$

Example

Let α be an ideal in A, and set

$$S = 1 + \alpha = \{1 + x; \ x \in \alpha\} = \{x \in A; x = 1 \mod \alpha\}.$$

Then S is multiplicatively closed.
Examples of Rings of Fractions

Example

Let \(f \in A \) and set \(S = \{ f^n; \ n \geq 0 \} \).

- The subset \(S \) is multiplicatively closed.
- We write \(A_f \) for \(S^{-1}A \) in this case.
- If \(A = \mathbb{Z} \) and \(f = q \in \mathbb{Z} \), then \(A_f \) consists of rational numbers of the form \(mq^{-n} \) with \(m \in \mathbb{Z} \) and \(n \geq 0 \).
Examples of Rings of Fractions

Reminder

- An ideal p of A is called a prime ideal when
 \[xy \in p \iff x \in p \text{ or } y \in p. \]
- Any maximal ideal is prime.
- A local ring is a ring that has a unique maximal ideal.

Example

Let p be a prime ideal, and set $S = A \setminus p$. We have

- p is prime \iff S is multiplicatively closed.

We denote by A_p the ring $S^{-1}A$ in this case.
Facts

Let m be the subset of A_p consisting of elements of the form a/s with $a \in p$ and $s \in S$.

- m is an ideal of A_p.
- If $b/t \not\in m$, then $b \not\in p$, i.e., $b \in S$, and so b/t is a unit in A_p (with inverse t/b).
- Thus, if a is an ideal such that $a \not\subseteq m$, then a contains a unit, and hence $a = A$.
- It follows that m is a maximal ideal of a and is the only such ideal. Thus, A_p is a local ring.

Definition

The ring A_p is called the localization of A at p.

Examples of Rings of Fractions

Example

\(A = \mathbb{Z} \) and \(p = (p) \), where \(p \) is a prime number. Then \(\mathbb{Z}_p \) consists of all rational numbers of the form \(\frac{m}{n} \) where \(n \) is prime to \(p \).

Example

\(A = k[t_1, \ldots, t_n] \), where \(k \) is a field, and \(p \) is a prime ideal in \(A \).

- \(A_p \) consists of all rational functions \(\frac{f}{g} \), where \(g \not\in p \).
- Let \(V \) be the variety defined by \(p \), i.e.,

\[
 p = \bigcap_{f \in p} f^{-1}(0) \subset k^n.
\]

If \(k \) is infinite, then \(A_p \) can be identified with the ring of all rational functions on \(k^n \) that are defined on almost all points of \(V \). It is called the *local ring of \(k^n \) along \(V \).*

- This is the prototype of local rings that arise in algebraic geometry.
The construction of $S^{-1}A$ can be further extended to A-modules.

Facts

Let S be a multiplicatively closed subset of A and M an A-module. On $M \times S$ we define a relation \equiv by

$$(m, s) \equiv (m, s') \iff \exists t \in S \text{ such that } t(s'm - sm') = 0.$$

As before, this is an equivalence relation.

Definition

1. The equivalence class of (m, s) is denoted m/s.
2. The set of equivalence classes is denoted $S^{-1}M$.
Proposition

$S^{-1}M$ is an $S^{-1}A$-module with respect to the addition and scalar multiplication given by

$\left(\frac{m}{s}\right) + \left(\frac{m'}{s'}\right) = \frac{s'm + sm'}{ss'}$, \hspace{1cm} \left(\frac{a}{s}\right) \cdot \left(\frac{m}{t}\right) = \frac{am}{st}$.

Definition

$S^{-1}M$ is called the module of fractions of M with respect to S.
Fact

If \(u : M \to N \) is an \(A \)-module homomorphism, then we get an \(S^{-1}A \)-module homomorphism,

\[
S^{-1}u : S^{-1}M \longrightarrow S^{-1}N, \quad m/s \longrightarrow u(m)/s.
\]

Thus, the operation \(S^{-1} \) is a functor from the category of \(A \)-modules to the category of \(S^{-1}A \)-modules.

Proposition (Proposition 3.3)

The functor \(S^{-1} \) is exact, i.e., if \(M' \xrightarrow{f} M \xrightarrow{g} M'' \) is exact at \(M \), then \(S^{-1}M' \xrightarrow{S^{-1}f} S^{-1}M \xrightarrow{S^{-1}g} S^{-1}M'' \) is exact at \(S^{-1}M \).
Remark
Let M' be a sub-module of M.
- Applying the previous result to $M' \hookrightarrow M \twoheadrightarrow 0$ produces an injective $S^{-1}A$-module homomorphism $S^{-1}M' \rightarrow S^{-1}M$.
- This allows us to identify $S^{-1}M'$ with a sub-module of $S^{-1}M$.
Corollary (Corollary 3.4)

Let \(N \) and \(P \) be sub-modules of \(M \). Then:

1. \(S^{-1}(N + P) = S^{-1}(N) + S^{-1}(P) \).
2. \(S^{-1}(N \cap P) = S^{-1}(N) \cap S^{-1}(P) \).
3. The \(S^{-1} \text{-modules} S^{-1}(M/N) \) and \(S^{-1}M/S^{-1}N \) are isomorphic.
We a canonical A-module isomorphism,

$$S^{-1}A \otimes_A M \simeq S^{-1}M, \quad (a/s) \otimes m \longrightarrow am/s.$$

Remarks

1. As $(a/s) \times m \rightarrow am/s$ is A-bilinear, by the universal property of the tensor product there is a unique A-module homomorphism $f : S^{-1}A \otimes_A M \rightarrow S^{-1}M$ such that

$$f((a/s) \otimes m) = am/s.$$

2. The A-module map $g : SM \rightarrow S^{-1}A \otimes_A M$, $m/s \rightarrow (1/s) \otimes m$ is an inverse of f, since

$$f \circ g(m/s) = f((1/s) \otimes m) = 1m/s = m/s,$$

$$g \circ f ((a/s) \otimes m) = g(am/s) = (1/s) \otimes am = (a/s) \otimes m.$$

Thus, $f : S^{-1}A \otimes_A M \rightarrow S^{-1}M$ is an A-module isomorphism.
Corollary (Corollary 3.6)

$S^{-1}A$ is a flat A-module, i.e., the functor $S^{-1}A \otimes -$ preserves exactness of A-module sequences.

Proposition (Proposition 3.7)

If M and N are A-modules, then we have a canonical isomorphism,

$$S^{-1}M \otimes_{S^{-1}A} S^{-1}N \simeq S^{-1}(M \otimes_A N), \quad (m/s) \otimes (n/t) \mapsto (m \otimes n)/st.$$

In particular, for any prime ideal p of A we get an A_p-module isomorphism,

$$M_p \otimes_{A_p} N_p \simeq (M \otimes_A N)_p.$$
The proof is similar to that of Proposition 3.5.

1. Due to the $S^{-1}A$-bilinearity of $(m/s) \times (n/t) \to (m \otimes n)/st$ there is a unique $S^{-1}A$-module homomorphism $f : S^{-1}M \otimes_{S^{-1}A} S^{-1}N \to S^{-1}(M \otimes A N)$ such that
 $$f ((m/s) \otimes (n/t)) = (m \otimes n)/st.$$

2. We also observe that
 $$(m/s) \otimes (n/t) = [(1/s)(m/1)] \otimes [(1/t)(n/1)] = \frac{1}{st} [(m/1) \otimes (n/1)].$$

 In particular, we have
 $$(m/st) \otimes (n/1) = \frac{1}{st} [(m/1) \otimes (n/1)] = (m/s) \otimes (n/t).$$

3. Using this it can be checked that $(m \otimes n)/s \to (m/s) \otimes (n/1)$ is an inverse of f, and hence f is an isomorphism.
Local Properties

Definition

We say that a property P of a ring A (or an A-module M) is a local property when

A (or M) has P \iff A_p (or M_p) has P for each prime ideal p of A.

The next propositions provide examples of local properties.

Proposition (Proposition 3.8)

Let M be an A-module. Then TFAE:

1. $M = 0$.
2. $M_p = 0$ for each prime ideal p of A.
3. $M_m = 0$ for each maximal ideal m of A.
Local Properties

Proposition (Proposition 3.9; 1st Part)

Let $\phi : M \to N$ be an A-module homomorphism. Then TFAE:

1. ϕ is injective.
2. $\phi_p : M_p \to N_p$ is injective for every prime ideal p of A.
3. $\phi_m : M_m \to N_m$ is injective for every maximal ideal m of A.

Proposition (Proposition 3.9; 2nd Part)

Let $\phi : M \to N$ be an A-module homomorphism. Then TFAE:

1. ϕ is surjective.
2. $\phi_p : M_p \to N_p$ is surjective for every prime ideal p of A.
3. $\phi_m : M_m \to N_m$ is surjective for every maximal ideal m of A.
As the following result shows, flatness is a local property.

Proposition (Proposition 3.10)

Let M be an A-module. TFAE:

1. M is a flat A-module.
2. M_p is a flat A_p-module for every prime ideal p of A.
3. M_m is a flat A_m-module for every maximal ideal m of A.
Let $f : A \rightarrow B$ be a ring homomorphism.

- If \mathfrak{a} is an ideal in A, then its extension \mathfrak{a}^e is the ideal in B generated by $f(\mathfrak{a})$. Thus, it consists of all finite sums,

$$\sum f(a_i)b_i, \quad a_i \in \mathfrak{a}, \quad b_i \in B.$$

- If \mathfrak{b} is an ideal in B, then its contraction \mathfrak{b}^c is the ideal $f^{-1}(\mathfrak{b})$ in A.

- If \mathfrak{a} and \mathfrak{b} are ideals in A, their ideal quotient is the ideal

$$(\mathfrak{a} : \mathfrak{b}) = \{ x \in A; xb \subseteq \mathfrak{a} \}.$$

When $\mathfrak{b} = (b)$ we write $(a : b)$ for $(a : (b))$.

Extended and Contracted Ideals in Rings of Fractions

Facts

Let \(f : A \to S^{-1}A \) be the natural homomorphism \(a \to a/1 \).

- If \(\alpha \) is an ideal in \(A \), then any \(y \in \alpha^e \) is of the form
 \[
 y = \sum f(a_i)(b_i/s_i) = \sum (a_i/1)(b_i/s_i) = \sum a_i b_i / s_i,
 \]
 where \(a_i \in \alpha \), \(b_i \in B \) and \(s_i \in S \).
- Set \(s = \prod s_i \) and \(t_i = \prod_{j \neq i} s_j \), so that \(1/s_i = t_i/s \). Then
 \[
 y = \sum (a_i b_i t_i / s) = \left(\sum a_i b_i t_i \right) / s.
 \]
- Set \(\alpha' = \sum a_i b_i t_i \). Then \(\alpha' \in \alpha \), and so \(y = \alpha' / s \in S^{-1} \alpha \).
- We then deduce that
 \[
 \alpha^e = S^{-1} \alpha.
 \]
Proposition (Proposition 3.11)

1. If \(q \) is an ideal in \(S^{-1}A \), then \(q = S^{-1}(q^c) \). Thus, any ideal in \(S^{-1}A \) is an extended ideal.

2. If \(\alpha \) is an ideal in \(A \), then \(\alpha^{ec} = \bigcup_{s \in S} (\alpha : s) \). In particular, \(\alpha^e = (1) \) if and only if \(S \cap \alpha \neq \emptyset \).

3. An ideal \(\alpha \) in \(A \) is a contracted ideal if and only if no element of \(S \) is a zero-divisor in \(A/\alpha \).

4. We have a one-to-one correspondence \(p \leftrightarrow S^{-1}p \) between prime ideal in \(S^{-1}A \) and prime ideals in \(A \) that don’t meet \(S \).

5. The operation \(S^{-1} \) on ideals commutes with taking finite sums, products, intersections, and radicals.
Reminder

- The *nilradical* of A is the ideal

$$\mathfrak{N} = \{x \in A; \ x^n = 0 \text{ for some } n \geq 1\}.$$

- Equivalently, \mathfrak{N} is the intersection of all the prime ideals of A (see Proposition 1.8).

Corollary (Corollary 3.12)

*The nilradical of $S^{-1}A$ is precisely $S^{-1}\mathfrak{N}$.***
Corollary (Corollary 3.13)

Let \(p \) be a prime ideal of \(A \). Then the prime ideals of the local ring \(A_p \) are in one-to-one correspondence with the prime ideals of \(A \) that are contained in \(p \).

Remarks

- By this corollary, passing from \(A \) to \(A_p \) cuts out all prime ideals except those contained in \(p \).
- By Proposition 1.1, passing from \(A \) to \(A/p \) cuts out all prime ideals except those containing \(p \).
- Thus, if \(q \) is a prime ideal contained in \(p \), then passing to \((A_p)/q \simeq (A/q)_p \) restricts ourselves to those prime ideals between \(q \) and \(p \).
- For \(q = p \) we obtain the residual field of \(p \). It can be realized either as the fraction field of the integral domain \(A/p \), or as the residue field of the local ring \(A_p \).
Reminder

- If N and P are sub-modules of an A-module M, then
 \[(N : P) = \{ x \in A; xP \subseteq N \}.\]
 This is an ideal of A.

- The \textit{annihilator} of M, denoted $\text{Ann}(M)$, is the ideal $(0 : M)$. That is,
 \[\text{Ann}(M) = \{ x \in A; xM = 0 \}.\]

- By Exercise 2.2 we have
 \[
 \text{Ann}(N + P) = \text{Ann}(N) \cap \text{Ann}(P),

 (N : P) = \text{Ann}((N + P)/N).
 \]
Proposition (Proposition 3.14)

Let M be a finitely generated A-module. Then

$$S^{-1}(\text{Ann}(M)) = \text{Ann}(S^{-1}M).$$

Remark

- If M is single generated, i.e., $M = Ax$. Then we have an exact sequence of A-modules,

$$0 \longrightarrow \text{Ann}(M) \longrightarrow A \xrightarrow{a \mapsto ax} M \longrightarrow 0.$$

- By exactness of the functor S this gives an exact sequence of $S^{-1}A$-modules,

$$0 \longrightarrow S^{-1}(\text{Ann}(M)) \longrightarrow S^{-1}A \xrightarrow{a/s \mapsto ax/s} S^{-1}M \longrightarrow 0,$$

which shows that $\text{Ann}(S^{-1}M) = S^{-1}(\text{Ann}(M)).$
Corollary (Corollary 3.15)

If N and P are sub-modules of M with P finitely generated, then

$$S^{-1}(N : P) = (S^{-1}N : S^{-1}P).$$

Remarks

- The fact that P is finitely generated implies that $(N + P)/N$ is finitely generated as well.

- As $(N : P) = \text{Ann}((N + P)/N)$ by applying the previous proposition we get

$$S^{-1}(N : P) = \text{Ann} \left[S^{-1}((N + P)/N) \right].$$

- We have

$$S^{-1}((N + P)/P) = S^{-1}(N + P)/S^{-1}N = (S^{-1}N + S^{-1}P)/S^{-1}N.$$

- Thus,

$$S^{-1}(N : P) = \text{Ann} \left[(S^{-1}N + S^{-1}P)/S^{-1}N \right] = (S^{-1}N : S^{-1}P).$$
Proposition (Proposition 3.16)

Let \(g : A \to B \) be a ring homomorphism, and \(\mathfrak{p} \) a prime ideal in \(A \).
Then TFAE:

(i) \(\mathfrak{p} \) is the contraction of a prime ideal in \(B \).

(ii) \(\mathfrak{p}^{ec} = \mathfrak{p} \).