Definition (Rings)

A ring A is a set with an addition and a multiplication so that:

1. A is an Abelian group w.r.t. its addition, and so
 - A has a zero element, denoted 0.
 - Every $x \in A$ has an additive inverse $-x$.

2. Multiplication is associative and distributive over addition, i.e.,
 \[
 (xy)z = x(yz),
 x(y + z) = xy + xz, \quad (x + y)z = xz + yz.
 \]

Remarks

1. 0 is absorbant, i.e., $0x = x0 = 0$ for all $x \in A$.
2. $x(y - z) = xy - xz$ and $(x - y)z = xz - yz$.
A ring A is commutative when

$$xy = yx \quad \text{for all } x, y \in A.$$

An identity element $1 \in A$ is such that

$$1x = x1 = x \quad \text{for all } x \in A.$$

Such an element is unique.

By a ring we shall always mean a commutative ring with an identity element.

If $1 = 0$, then $x = 1x = 0x = 0$, and so 0 is the unique element. We called this ring the zero ring and denote it by 0.
Definition (Ring Homomorphisms)

Given rings A and B, a ring homomorphism $f : A \to B$ is a map such that

1. $f(x + y) = f(x) + f(y)$.
2. $f(xy) = f(x)f(y)$.
3. $f(1) = 1$.

Remark

The property (i) implies that

$$f(x - y) = f(x) - f(y), \quad f(-x) = -f(x), \quad f(0) = 0.$$

Remark

If $f : A \to B$ and $g : B \to C$ are ring homomorphisms, then the composition $g \circ f : A \to C$ is a ring homomorphism as well.
Definition (Subrings)

A subring of a ring A is a subset S that is closed under addition and multiplication and contains the unit. That is,

$$x, y \in S \implies x + y \in S \text{ and } xy \in S,$$
$$1 \in S.$$

Remarks

1. Any subring is a ring.
2. If S is a subring of a ring A, then the inclusion map of S into A is a ring homomorphism.
Definition (Ideals)

An ideal \mathfrak{a} of a ring A is an additive subgroup such that $A\mathfrak{a} \subset \mathfrak{a}$. That is,

$$x, y \in \mathfrak{a} \implies x + y \in \mathfrak{a},$$

$$x \in A \text{ and } y \in \mathfrak{a} \implies xy \in \mathfrak{a}.$$

Observation

The multiplication of A uniquely descends to a multiplication on the quotient A/\mathfrak{a}, with respect to which A/\mathfrak{a} is a ring.

Remarks

1. A/\mathfrak{a} is called a quotient ring. Its elements $x + \mathfrak{a}$ are called cosets (of \mathfrak{a} in A).
2. The canonical map $\phi : A \to A/\mathfrak{a}$ is a surjective ring homomorphism.
Proposition

There is a one-to-one order-preserving correspondence between ideals \(\mathfrak{b} \) of \(A \) that contains \(\mathfrak{a} \) and the ideals \(\overline{\mathfrak{b}} \) of \(A/\mathfrak{a} \) given by
\[
b = \phi^{-1}(\overline{\mathfrak{b}}).
\]

Fact

Let \(f : A \to B \) is a ring homomorphism. Then
1. The kernel \(f^{-1}(0) \) is an ideal of \(\mathfrak{a} \).
2. The image \(f(A) \) is a subring of \(B \).
3. \(f \) induces a ring isomorphism \(A/f^{-1}(0) \cong f(A) \).

Remark

The notation \(x \equiv y \pmod{\mathfrak{a}} \) means that \(x - y \in \mathfrak{a} \).
Definition (Zero-Divisors, Integral Domains)

- A zero-divisor of a ring A is any element x that divides 0, i.e., there is $y \neq 0$ such that $xy = 0$.
- A (non-zero) ring with no non-zero divisors $\neq 0$ is called an integral domain. That is, we have

$$x \neq 0 \text{ and } xy = 0 \implies y = 0.$$

Examples

The following rings are integral domains:

- The ring of integers \mathbb{Z}.
- Any polynomial rings $k[x_1, \ldots, x_n]$, where k is a field.
Definition (Nilpotent Elements)
An element $x \in A$ is nilpotent when $x^n = 0$ for some $n \geq 1$.

Remark
Any nilpotent element is a zero-divisor (unless $A = 0$). The converse is not true in general.
Definition (Units)

- A unit of A is any element x that divides 1, i.e., there is $y \in A$ such that $xy = 1$.
- In this case y is unique and is denoted x^{-1}.

Fact

The set of units of A is a (multiplicative) Abelian group.
Definition (Principal Ideals)

A principal ideal is any ideal generated by a single element, i.e., it is of the form Ax for some $x \in A$.

Remarks

1. We shall also denote Ax by (x). It consists of all multiples ax, $a \in A$.
2. x is a unit if and only if $(x) = A = (1)$.
3. The zero ideal (0) is denoted 0.

Definition (Fields)
A field is a ring A in which $1 \neq 0$ and every $x \neq 0$ is a unit.

Remark
Every field is an integral domain. The converse is not true (e.g., \mathbb{Z}).

Proposition (Proposition 1.2)
Let A be a non-zero ring. TFAE:
(i) A is a field.
(ii) The only ideals in A are 0 and A.
(iii) Every ring homomorphism of A into a non-zero ring is one-to-one.
Prime Ideals and Maximal Ideals

<table>
<thead>
<tr>
<th>Definition (Prime Ideals)</th>
<th>An ideal $p \subsetneq A$ is prime when $xy \in p \Rightarrow x \in p$ or $y \in p$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fact</td>
<td>p is prime $\iff A/p$ is an integral domain.</td>
</tr>
<tr>
<td>Definition (Maximal Ideals)</td>
<td>An ideal $m \subsetneq A$ is maximal when there is no ideal α such that $m \subsetneq \alpha \subsetneq A$.</td>
</tr>
<tr>
<td>Fact (Proposition 1.1 + Proposition 1.2)</td>
<td>m is maximal $\iff A/p$ is a field. In particular, any maximal ideal is prime.</td>
</tr>
<tr>
<td>Remark</td>
<td>The zero ideal is prime if and only if A is an integral domain.</td>
</tr>
</tbody>
</table>
Fact

Let $f : A \rightarrow B$ be a ring homomorphism and q a prime ideal. Then $f^{-1}(q)$ is a prime ideal in A.

Remark

If \mathfrak{n} is a maximal ideal in A, then $f^{-1}(\mathfrak{n})$ is prime, but it need not be maximal (e.g., $A = \mathbb{Z}$, $B = \mathbb{Q}$, $\mathfrak{n} = 0$).
Theorem (Theorem 1.3; see Atiyah-MacDonald + Carlson)

Every ring \(A \neq 0 \) admits a maximal ideal.

Corollary (Corollary 1.4)

For any ideal \(\alpha \subset A \), there is a maximal ideal that contains \(\alpha \).

Corollary (Corollary 1.5)

Every non-unit of \(A \) is contained in a maximal ideal.
Remark

There are rings with exactly one maximal ideal, e.g., fields (in which 0 is the unique maximal ideal).

Definition

1. A ring with exactly one maximal ideal \(\mathfrak{m} \) is called a local ring.
2. The field \(k = A/\mathfrak{m} \) is called the residual field of \(A \).

Proposition (Proposition 1.6)

(i) Let \(\mathfrak{m} \varsubsetneq A \) be an ideal such that any \(x \in A \setminus \mathfrak{m} \) is a unit. Then \(A \) is local ring and has \(\mathfrak{m} \) as unique maximal ideal.

(ii) Let \(\mathfrak{m} \) be a maximal ideal such that every element of \(1 + \mathfrak{m} \) is a unit. Then \(A \) is a local ring.
Prime Ideals and Maximal Ideals

Example

Let $A = k[x_1, \ldots, x_n]$, k field. If $f \in A$ is irreducible, then the ideal (f) is prime.

Example

Let $A = \mathbb{Z}$. Then

1. Every ideal of \mathbb{Z} is a principal ideal (m) for some $m \geq 0$.
2. (m) is a prime ideal if and only if $m = 0$ or is a prime number.
3. All the ideals (p) with p prime are maximal, since $\mathbb{Z}/(p) = \mathbb{Z}/p\mathbb{Z}$ is a field.
4. The same holds for $A = k[x_1]$, but not for $A = k[x_1, \ldots, x_n]$ with $n \geq 2$.
Example (Principal Ideal Domain)

A principal ideal domain is an integral domain in which every ideal is principal (e.g., \(\mathbb{Z} \), \(k[x_1] \)). In such an ideal every non-zero prime ideal is maximal.
Proposition (Proposition 1.7)

Let A be a ring. Denote by \mathfrak{N} the set of all nilpotent elements of A. Then the following holds:

1. \mathfrak{N} is an ideal
2. The quotient ring A/\mathfrak{N} has no non-zero nilpotent elements.

Definition

The ideal \mathfrak{N} is called the nilradical of A.

Proposition (Proposition 1.8; see Atiyah-MacDonald)

The nilradical \mathfrak{N} is the intersection of all the prime ideals of A.
Definition

The Jacobson radical \mathcal{R} of A is the intersection of all its maximal ideals.

Proposition (Proposition 1.9)

$$\mathcal{R} = \{ x \in A; \ 1 - xy \text{ is a unit for all } y \in A \}.$$
Operations on Ideals

Definition (Sum of Ideals)

If a and b are ideals in a ring A, their sum $a + b$ is the set all sums $x + y$ with $x \in a$ and $y \in b$.

Fact

$a + b$ is the smallest ideal that contains a and b.

Definition (Sum of Ideals)

Given a (possibly infinite) family $\{a_i\}_{i \in I}$ of ideals of A, the sum $\sum_{i \in I} a_i$ consists of all finite sums $\sum x_i$ with $x_i \in a_i$.

Fact

$\sum_{i \in I} a_i$ is the smallest ideal that contains the a_i's.
Fact
The intersection of any family of ideals \((\mathfrak{a}_i)_{i \in I}\) is an ideal.

Consequence
The ideals of \(A\) form a complete lattice with respect to inclusion, i.e., every subset has a supremum and an infimum.
Definition (Product of Ideals)

The product of two ideals \(\mathfrak{a} \) and \(\mathfrak{b} \) in \(A \) is the ideal \(\mathfrak{a} \mathfrak{b} \) generated by \(\mathfrak{a} \) and \(\mathfrak{b} \). It consists of all finite sums \(\sum x_i y_i \) with \(x_i \in \mathfrak{a} \) and \(y_i \in \mathfrak{b} \).

Remark

1. We similarly define the product of any finite family of ideals.
2. In particular, the power \(\mathfrak{a}^n \), \(n \geq 1 \), of an ideal \(\mathfrak{a} \) is generated by products \(x_1 \cdots x_n \) with \(x_j \in \mathfrak{a} \).
3. By convention \(\mathfrak{a}^0 = (1) = A \).
Example

Suppose that \(A = \mathbb{Z} \), \(a = (m) \) and \(b = (n) \). Then:

1. \(a + b \) is the ideal generated by \(\gcd(m, n) \) (greatest common divisor, a.k.a. highest common factor).
2. \(a \cap b \) is the ideal generated by \(\text{lcm}(m, n) \) (lowest common multiple).
3. \(ab = (mn) \).

Example

\(A = k[x_1, \ldots, x_n] \), \(a = (x_1, \ldots, x_n) \) ideal generated by \(x_1, \ldots, x_n \). Then \(a^m, m \geq 1 \), consists of all polynomials with no terms of degree \(\leq m \).
Remarks

1. The three operations (sum, intersection, product) are all associative and commutative.

2. We also have the distributive law,

\[a(b + c) = ab + ac. \]

3. In \(\mathbb{Z} \) the laws \(\cap \) and \(+ \) are distributive over each other. This is not true for a general ring. At best we have the modular law,

\[a \cap (b + c) = a \cap b + a \cap c \quad \text{if } a \supseteq b \text{ or } a \supseteq c. \]

4. In \(\mathbb{Z} \) we have \((a + b)(a \cap b) = ab\). In general, we only have

\[(a + b)(a \cap b) \subseteq ab. \]
Definition

Two ideals \(a \) and \(b \) are said to be coprime when \(a + b = (1) \). That is, there are \(x \in a \) and \(y \in b \) such that \(x + y = 1 \).

Fact

We always have the inclusions,

\[(a + b)(a \cap b) \subseteq ab \quad \text{and} \quad ab \subseteq a \cap b.\]

Thus, if \(a \) and \(b \) are coprime, then we have

\[a \cap b = ab.\]
Definition (Direct Product of Rings)
Let A_1, \ldots, A_n be rings ($n \geq 2$).

1. The direct product $A := \prod_{i=1}^{n} A_i$ consists of sequences (x_1, \ldots, x_n) with $x_i \in A_i$.
2. We equip it with the component-wise addition and multiplication.

Facts

1. $\prod_{i=1}^{n} A_i$ is a commutative ring with identity $(1, \ldots, 1)$.
2. The projections $p_i : A \to A_i$ defined by $p_i(x) = x_i$ are ring homomorphisms.
Let A be a ring a_1, \ldots, a_n ideals of A. Define $\phi : A \rightarrow \prod_{i=1}^{n}(A/a_i)$ by

$$\phi(x) = (x + a_1, \ldots, x + a_n), \quad x \in A.$$

Fact

ϕ is a ring homomorphism.

Proposition (Proposition 1.10)

The following holds.

1. If a_i and a_j are coprime whenever $i \neq j$, then $\prod a_i = \cap a_i$.
2. ϕ is onto if and only if a_i and a_j are coprime whenever $i \neq j$.
3. ϕ is one-to-one if and only if $\cap a_i = 0$.

Remark
The union $\mathfrak{a} \cup \mathfrak{b}$ need not be an ideal in general.

Proposition (Proposition 1.11)

1. Assume that $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ are prime ideals and \mathfrak{a} is an ideal contained in $\bigcup \mathfrak{p}_i$. Then $\mathfrak{a} \subseteq \mathfrak{p}_i$ for some i.

2. Assume that $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ are ideals and \mathfrak{p} is a prime ideal containing $\bigcap \mathfrak{a}_i$. Then $\mathfrak{p} \supseteq \mathfrak{a}_i$ for some i. If $\mathfrak{p} = \bigcap \mathfrak{a}_i$, then $\mathfrak{p} = \mathfrak{a}_i$ for some i.
Operations on Ideals

Definition (Ideal Quotient)

If \(a \) and \(b \) are ideals in a ring \(A \), their ideal quotient is

\[
(a : b) := \{ x; \, xb \subseteq a \}.
\]

Fact

\((a : b) \) is an ideal.

Definition

\((0; b) \) is called the annihilator of \(b \) and is also denoted by \(\text{Ann}(b) \). It consists of all \(x \in A \) such that \(xb = 0 \).

Remarks

1. When \(b \) is a principal ideal \((x)\) we shall denote \((a : (x))\) and \(\text{Ann}((x))\) by \((a : x)\) and \(\text{Ann}(x)\), respectively.
2. \(\text{Ann}(x) = \{ y \in A; xy = 0 \}\).
3. The set of all non-zero divisors in \(A \) is \(D = \bigcup_{x \neq 0} \text{Ann}(x) \).
Example

$A = \mathbb{Z}$, $a = (m)$, $b = (n)$. Then

$$(a : b) = (q), \quad q = \frac{m}{\gcd(m, n)}.$$

Exercise (Exercise 1.12; see Carlson)

(i) $a \subset (a : b)$.

(ii) $(a : b)b \subset a$.

(iii) $((a : b) : c) = (a : bc) = ((a : c) : b)$.

(iv) $\bigcap a_i : b) = \bigcap (a_i : b)$.

(v) $a : \bigcap b_i) = \bigcap (a : b_i)$.
Definition (Radical of an Ideal)

Let \(\mathfrak{a} \) be an ideal of \(A \). Its radical is

\[
\tau(\mathfrak{a}) := \{ x \in A; \ x^n \in \mathfrak{a} \text{ for some } n \geq 1 \}.
\]

Fact

If \(\phi : A \to A/\mathfrak{a} \) is the canonical homomorphism, then \(\tau(\mathfrak{a}) = \phi^{-1}(\mathfrak{N}_{A/\mathfrak{a}}) \), and hence \(\tau(\mathfrak{a}) \) is an ideal (since the nilradical \(\mathfrak{N}_{A/\mathfrak{a}} \) is an ideal by Proposition 1.7).
Exercise (Exercise 1.13; see Carlson)

(i) \(r(a) \supseteq a \).

(ii) \(r(r(a)) = r(a) \).

(iii) \(r(ab) = r(a \cap b) = r(a) \cap r(b) \).

(iv) \(r(a) = (1) \iff a = (1) \).

(v) \(r(a + b) = r(r(a) + r(b)) \).

(vi) If \(p \) is prime, then \(r(p^n) = p \) for all \(n \geq 1 \).

Proposition (Proposition 1.14)

The radical \(r(a) \) is the intersection of the prime ideals that contains \(a \).
Remark

Given any subset $E \subseteq A$ we may define its radical $r(E)$ as above. This is not an ideal in general (unless E is an ideal).

Fact

Given any family E_α of subsets of A, we have $r(\bigcup E_\alpha) = \bigcup r(E_\alpha)$.

Proposition (Proposition 1.15)

The set D of zero-divisors of A is equal to $\bigcup_{x \neq 0} r(\text{Ann}(x))$.
Example

Let $A = \mathbb{Z}$, $\alpha = (m)$. Let p_1, \ldots, p_r be the prime divisors of m. Then

$$r(\alpha) = (p_1 \cdots p_r) = \bigcap_{i=1}^{r} (p_i).$$

Proposition (Proposition 1.16)

If α and β are ideals of A such that $r(\alpha)$ and $r(\beta)$ are coprime, then α and β are coprime.
Let \(f : A \rightarrow B \) be a ring homomorphism.

Fact

If \(\mathfrak{a} \) is an ideal, then \(f(\mathfrak{a}) \) need not be an ideal.

Definition (Extension)

The extension \(\mathfrak{a}^e \) of \(\mathfrak{a} \) is the ideal \(Bf(\mathfrak{a}) \) generated by \(\mathfrak{a} \). That is, \(\mathfrak{a}^e \) consists of all finite sums \(\sum y_if(x_i) \) with \(y_i \in B \) and \(x_i \in \mathfrak{a} \).

Fact

If \(\mathfrak{b} \) is an ideal of \(B \), then \(f^{-1}(\mathfrak{b}) \) is in ideal of \(A \).

Definition (Contraction)

\(f^{-1}(\mathfrak{b}) \) is called the contraction of \(\mathfrak{b} \) and is denoted by \(\mathfrak{b}^c \).
Facts

1. If \(b \) is prime, then its contraction \(b^c \) is prime as well.
2. If \(a \) is a prime ideal of \(A \), then its extension \(b^e \) need not be prime (cf. example below).

Example (see Atiyah-MacDonald)

Consider the inclusion \(\mathbb{Z} \to \mathbb{Z}[i] \), where \(i = \sqrt{-1} \). The extension of a prime ideal \((p) \) in \(\mathbb{Z} \) may or may not be prime. Namely:

- \((2)^e = ((1 + i)^2)\), the square of a prime ideal in \(\mathbb{Z}[i] \).
- If \(p \equiv 1 \pmod{4} \), then \((p)^e\) is the product of two distinct prime ideals.
- If \(p \equiv 2 \pmod{4} \), then \((p)^e\) is prime in \(\mathbb{Z}[i] \).
Definition

- \(C \) is the set of contracted ideals in \(A \).
- \(E \) is the set of extended ideals in \(B \).

Proposition (Proposition 1.17; see also Carlson)

(i) \(a \subseteq a^{ec} \) and \(b \supseteq b^{ce} \).
(ii) \(a = a^{ece} \) and \(b = b^{cec} \).
(iii) \(C = \{a; \ a^{ec} = a\} \), \(E = \{b; \ b^{ce} = b\} \), and \(a \rightarrow a^e \) is a bijection from \(C \) onto \(E \) with inverse \(b \rightarrow b^c \).
Exercise (Exercise 1.18; see Carlson)

Let a_1 and a_2 be ideals of A and let b_1 and b_2 be ideals of B.

\[
\begin{align*}
(a_1 + a_2)^e &= a_1^e + a_2^e, \\
(a_1 \cap a_2)^e &\subseteq a_1^e \cap a_2^e, \\
(a_1 a_2)^e &= a_1^e a_2^e, \\
(a_1 : a_2)^e &\subseteq (a_1^e : a_2^e), \\
\text{and } r(a)^e &\subseteq r(a^e),
\end{align*}
\]

\[
\begin{align*}
(b_1 + b_2)^c &\supseteq b_1^c + b_2^c, \\
(b_1 \cap b_2)^c &= b_1^c \cap b_2^c, \\
(b_1 b_2)^c &\supseteq b_1^c b_2^c, \\
(b_1 : b_2)^c &\subseteq (b_1^c : b_2^c), \\
\text{and } r(b)^c &= r(b^c).
\end{align*}
\]

The set of ideals E is closed under sum and product, and C is closed under the other three operations (intersection, ideal quotient and radical).