Noncommutative Geometry
Lecture 1: Quantized Calculus

Raphaël Ponge

Seoul National University

October 24, 2011
Quantum Mechanics vs. General Relativity

Fundamental Problem
- Unify general relativity and quantum mechanics.
- Find a common mathematical framework for general relativity and quantum mechanics.

NCG Approach
Translate the tools of Riemannian geometry into the Hilbert space formalism of quantum mechanics.
Diffeomorphism Invariant Geometry

Setup

- M smooth manifold.
- Γ is a group of diffeomorphisms acting on M.

Remark

1. If Γ acts freely and properly, then M/Γ is a smooth manifold.
2. In general, M/Γ need not be Hausdorff!!!
Observation

The algebra $C^\infty_c(M/\Gamma)$ always makes sense when realized as the crossed-product algebra,

$$C^\infty_c(M) \rtimes \Gamma := \left\{ \text{finite sums} \sum_{\varphi \in \Gamma} f_\varphi U_\varphi; \ f_\varphi \in C^\infty_c(M) \right\},$$

where the f_φ and U_φ are represented as operators such that

$$U_\varphi^* = U_\varphi^{-1} = U_{\varphi^{-1}}, \quad U_\varphi f = (f \circ \varphi^{-1}) U_\varphi.$$

Theorem (Green)

*If Γ acts freely and properly, then $C^\infty_c(M/\Gamma) \simeq C^\infty_c(M) \rtimes \Gamma$.***
The Noncommutative Torus

Example

Given \(\theta \in \mathbb{R} \), let \(\mathbb{Z} \) act on \(S^1 \) by

\[
k.z := e^{2ik\pi \theta} z \quad \forall z \in S^1 \quad \forall k \in \mathbb{Z}.
\]

Remark

If \(\theta \notin \mathbb{Q} \), then the orbits of the action are dense in \(S^1 \).

The crossed-product algebra \(A_\theta := C^\infty(S^1) \rtimes_\theta \mathbb{Z} \) is generated by two operators \(U \) and \(V \) such that

\[
U^* = U^{-1}, \quad V^* = V^{-1}, \quad UV = e^{2i\pi \theta} UV.
\]

Remark

The algebra \(A_\theta \) is called the noncommutative torus.
Gel’fand Transform

Theorem (Gel’fand-Naimark)

Any C^*-algebra can be realized as a closed self-adjoint subalgebra of some $\mathcal{L}(\mathcal{H})$.

Theorem (Gel’fand-Naimark)

There is a one-to-one correspondence,

\[\{ \text{Locally Compact Spaces} \} \quad \longleftrightarrow \quad \{ \text{Commutative } C^*\text{-algebras} \} \]

\[X \quad \longrightarrow \quad C_0(X) \subset \mathcal{L}(L^2(X)) \]
<table>
<thead>
<tr>
<th>Classical Calculus</th>
<th>Quantized Calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex Variable</td>
<td>Operator on \mathcal{H}</td>
</tr>
<tr>
<td>Real Variable</td>
<td>Selfadjoint Operator on \mathcal{H}</td>
</tr>
<tr>
<td>Infinitesimal Variable</td>
<td>Compact Operator</td>
</tr>
<tr>
<td>Infinitesimal of Order α</td>
<td>Compact Operator T</td>
</tr>
<tr>
<td>Differential $df = \sum \frac{\partial f}{\partial x^\mu} dx^\mu$</td>
<td>such that $\mu_n(T) = O(n^{-\alpha})$</td>
</tr>
<tr>
<td>Integral $\int f$</td>
<td>Quantized Differential $da = [F, a]$</td>
</tr>
<tr>
<td></td>
<td>Dixmier Trace $\int T$</td>
</tr>
</tbody>
</table>
The Atiyah-Singer Index Theorem

Definition

The *Fredholm index* of \mathcal{D}_E is

$$\text{ind} \mathcal{D}_E := \dim \ker \left[(\mathcal{D}_E)_{\mathbb{S}^+ \otimes E} \right] - \dim \ker \left[(\mathcal{D}_E)_{\mathbb{S}^- \otimes E} \right].$$

Theorem (Atiyah-Singer)

$$\text{ind} \mathcal{D}_E = (2i\pi)^{-\frac{n}{2}} \int_M \hat{A}(R^M) \wedge \text{Ch}(F^E),$$

where:

- $\hat{A}(R^M) := \det \frac{1}{2} \left[\frac{R^M/2}{\sinh(R^M/2)} \right]$ is called the \hat{A}-class of the curvature R^M of M.
- $\text{Ch}(F^E) := \text{Tr} \left[e^{-F^E} \right]$ is called the Chern form of the curvature F^E of ∇^E.